

Rhodium(I)-catalyzed *ortho*-alkenylation of 2-phenylpyridines with alkynes

Yeong-Gweon Lim,* Kyung-Hee Lee, Bon Tak Koo and Jung-Bu Kang*

1-2-6, Agency for Defense Development, Yuseong, PO Box 35-1, Daejeon 305-600, South Korea Received 7 August 2001; revised 31 August 2001; accepted 3 September 2001

Abstract—2-Phenylpyridines reacted with internal alkynes via C-H bond activation by a catalyst, RhCl(PPh₃)₃, to give the *ortho*-alkenylated products. © 2001 Elsevier Science Ltd. All rights reserved.

Recently, the C-C bond coupling reaction through C-H bond activation by transition metal complexes has become a useful method in synthetic organic chemistry. Even though many coupling reactions with alkenes via C-H bond activation by transition metal complexes have been reported by several groups,2-9 the coupling reaction with alkynes is still rare. Ruthenium complexes such as Ru(H₂)(CO)(PPh₃)₃ and Ru₃(CO)₁₂ have been used as catalysts for the coupling reaction of aromatic ketones and aldimines with alkynes, 10,11 and iridium(I) complexes such as [IrCl(cod)]₂/PR₃ have been used as catalysts for the coupling reaction of 1-naphthols.¹² Rhodium complexes such as Rh₄(CO)₁₂¹³ and RhCl(PPh₃)₃, 14b,c as well as cobalt complexes 14a,c have also been used for the coupling reaction of benzene and azobenzenes with diphenylacetylene, respectively. During the course of our studies of C-C bond coupling reaction by rhodium metal catalysts, we have found that the coupling reaction of 2-phenylpyridines with alkynes via C–H bond activation by a rhodium catalyst, RhCl(PPh₃)₃, gives alkenylated products. Herein, we report the preliminary results of a C-C coupling reaction at the ortho position of the phenyl ring of 2-

phenylpyridines with various alkynes by the Wilkinson catalyst.

2-Phenylpyridine 1 (0.3 mmol) reacted with 2-butyne (2 equiv.) in the presence of RhCl(PPh₃)₃ (10 mol%) and 10 mol% of PPh₃ in toluene (2 ml) for 20 h at 140°C in a 2.5 ml vail reactor with stirring to give the double ortho-alkenvlated product 3a as the major product together with the mono-alkenylated product 2a (2a:3a = 19:81, 64% isolated yield, run 1), as shown in Scheme 1. The mono-alkenylated product 2a can be separated easily from the double alkenylated product 3a by column chromatographic isolation (SiO₂, "hex:EtOAc=10:1). When 3 equiv. of 2-butyne were used, 3a was obtained as the sole product (run 2; E,E:E,Z=85:15, 96%). The structure of the major part of 3a is confirmed as E,E-isomer by analyses of ¹H NMR and NOE difference experiments (see Scheme 2). This result implies that a hydride inserts into coordinated alkyne by the syn manner. The additional PPh₃ led to higher conversion yield than the case of using Wilkinson catalyst only. The role of additional PPh₃

$$+ CH_3C \equiv CCH_3 \xrightarrow{\text{Cat.}} \frac{\text{Ch}_3}{\text{toluene}} + CH_3 \xrightarrow{\text{CH}_3} \frac{\text{CH}_3}{\text{CH}_3}$$

Scheme 1.

Keywords: rhodium catalyst; alkenylation; C-H bond activation; 2-phenylpyridines.

* Corresponding authors

0040-4039/01/\$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved. PII: \$0040-4039(01)01618-5

Scheme 2.

may be regeneration of reactive catalyst by the exchange of PPh₃=O formed during the catalytic reaction. When the bis-cyclooctene rhodium chloride dimer (5 mol%) was used without phosphine ligands, the reaction proceeded slowly (26% isolated yield). The [RhCl(coe)₂]₂/Cy₃P system, which is good for the alkylation of phenylpyridines with alkenes, showed low activities in this coupling reaction (28%, mono:double=4:96). The results of alkenylation are listed in Table 1.

In general, alkynes convert easily to benzene derivatives by transition metal catalyst. ¹⁵ Fortunately, the cyclotrimerized products of 2-butyne were not detected under these reaction conditions.

Another alkyne, 3-hexyne, gave a mixture of regioisomers of **2b** and **3b** under the same reaction conditions (**2b**:**3b** = 25:75, 86% isolated yield, run 3).

Unfortunately, 1-alkynes such as 1-hexyne and 1-phenylacetylene gave trace amounts of alkenylated products and unknown polymeric materials.

2-(o-Tolyl)pyridine **4**, having one site for alkenylation, reacted with 2-butyne (2 equiv.) under the same reaction conditions to give the mono *ortho*-alkenylated product **5a** in 96% isolated yield (run 4). The coupling reaction of 3-hexyne, 4-octyne and diphenylacetylene with **4** gave **5b**, **5c** and **5d** in 89, 97 and 74% isolated yields, respectively (runs 5–7). Some of the regioisomers, formed by isomerization of double bond to internal alkyl group, were found in the alkenylated products **5b** and **5c**.

2-[2-(3,3-Dimethylbutyl)phenyl]pyridine **6** having a bulky substituent at the *ortho* position led to low conversion yield because of steric hindrance (33% isolated yield, run 8). To obtain a high conversion yield, longer reaction times and high reaction temperature were applied to the coupling reaction. However, the

enhancement of yield failed and the isomerization of the product took place (41%, E:Z=81:19).

Another substrate, 3-methyl-2-phenylpyridine 8 reacted with 2-butyne to give the mono-alkenylated product 9a (molecular weight 223) as the major product, together with unexpected alkenylated product having a molecular weight of 277 (run 9). Surprisingly, the double ortho-alkenylated product 10a is established by analyses of ¹H and ¹³C NMR. This type of double coupled product is not detected in the coupling reaction with alkenes because of the limitation of rotation of the C-C bond between the pyridine group and phenyl group by methyl and alkyl groups in the ortho-alkylated product.3a,c These results imply that the rotation of the C-C bond between the pyridine group and phenyl group in the alkenylated product is easier than that in the alkylated product. The alkynes such as 3-hexyne, 4-octyne and diphenylacetylene also worked well (runs 10-12).

When 3 equiv. of 2-butyne were used, 2-(p-tolyl)pyridine 11 gave the double *ortho*-alkenylated product 13b in only 89% isolated yield (run 13).

To discover the regioselectivity of alkyne, unsymmetric alkyne such as 2-hexyne (2 equiv.) was applied to the reaction. Unfortunately, the coupled products after the coupling were obtained at nearly equal ratio (14:15 = 56:44, 52%). Another unsymmetric alkyne having a bulky group such as 3-trimethylsilyl-2-propyne (2 equiv.) was applied to this coupling reaction. This alkyne showed high regioselectivity and gave the regioisomer 16 together with 17 formed by Si–C bond cleavage in 90% isolated yield which contained 8% of the double alkenylated product (16:17 = 42:58).

Finally, 2-phenylquinoline was applied to these coupling reactions. Unfortunately, 2-phenylquinoline did not work with 2-butyne under the same reaction conditions.

Table 1. The results of the alkenylation of 2-phenylpyridines with alkynes^a

Run	Substrate	Alkyne (Equiv)	Product	Yield ^b (%)	Mono : double ^c
1		CH ₃ CCCH ₃ (2)	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	64	19 : 81
2		CH ₃ CCCH ₃ (3)	3a°	96	0:100
3		EtCCEt (3)	$2b \qquad 3b$	86	25 : 75
4	СН ₃	CH₃CCCH₃ (2)	CH ₃ CH ₃ CH ₃ 5a	96	100 : 0
5		EtCCEt (2)	El CH ₃ El Sb	89 ^f	100:0
6		Pr ⁿ CCPr ⁿ (2)	E 5D CH ₃ Pro 5c	97 ^g	100:0
7		PhCCPh (2)	CH ₃	74 ^h	100:0
8	CH ₂ CH ₂ Bu'	CH ₃ CCCH ₃ (2)	CH ₃ CH ₄ CH ₂ Bd 7	33	100:0
9	CH ₃	CH ₃ CCCH ₃ (2)	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CCH ₃	92	58 : 42
10		EtCCEt (2)	CH ₃ CH ₃ CH ₃ CH ₂ CH ₃ CH	96 ⁱ	73 : 27
11		Pr ⁿ CCPr ⁿ (2)	$\begin{array}{c} CH_3 \\ C(H^4) = C(H^4) \\ R^4 \\ R^6 \\ R^6 \end{array}$	99 ⁱ	60 : 40
12		PhCCPh (2)	CH ₃ CH ₃ CH ₃ CH ₃ C(h) = C(h) Ph Ph Ph CH ₃	57	73 : 27
13	11 CH ₃	CH ₃ CCCH ₃ (3)	CH ₃ CH ₃ CH ₃ CH ₃ 12 ^k	89	0:100

^aSubstrate: RhCl(PPh₃)₃: PPh₃ = 1:0.1:0.1, toluene, 140°C, 20h. ^bIsolated yields. ^aThe ratios were determined by ^aH NMR or GC. ^dE,E:E,Z = 86:14. ^aE,E:E,Z = 85:15. ^aYield contained 5% of regioisomer. ^aYield contained 20% of regioisomer. ^bE:Z or Z:E = 7:3, 24% of 4 were remained. ^aA mixture of regioisomers. ^aIone isomer, but the structure could not be determined. ^aE,E:E,Z = 73:27

In conclusion, we found that 2-phenylpyridines reacted with internal alkynes by the Wilkinson catalyst to give the alkenylated products in high yields. Unfortunately, terminal alkynes did not work under these coupling reactions. Unsymmetric alkyne having a bulky group showed high regioselectivity.

References

- (a) Activation of Unreactive Bonds and Organic Synthesis; Murai, S., Ed.; Springer: Berlin, 1999; (b) Guari, Y.; Sabo-Etienne, S.; Chaudret, B. Eur. J. Inorg. Chem. 1999, 1047; (c) Dyker, G. Angew. Chem., Int. Ed. 1999, 38, 1698.
- 2. (a) Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani, N. Nature 1993, 366, 529; (b) Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani, N.; Murai, S. Bull. Chem. Soc. Jpn. 1995, 68, 62; (c) Kakiuchi, F.; Tanaka, Y.; Sato, T.; Chatani, N.; Murai, S. Chem. Lett. 1995, 679; (d) Fujii, N.; Kakiuchi, F.; Chatani, N.; Murai, S. Chem. Lett. 1996, 939; (e) Sonoda, M.; Kakiuchi, F.; Kamatani, A.; Chatani, N.; Murai, S. Chem. Lett. 1996, 109; (f) Kakiuchi, F.; Yamauchi, M.; Chatani, N.; Murai, S. Chem. Lett. 1996, 111; (g) Fujii, N.; Kakiuchi, F.; Yamada, A.; Chatani, N.; Murai, S. Chem. Lett. 1997, 425; (h) Fujii, N.; Kakiuchi, F.; Yamada, A.; Chatani, N.; Murai, S. Bull. Chem. Soc. Jpn. 1998, 71, 285; (i) Kakiuchi, F.; Sato, T.; Yamauchi, M.; Chatani, N.; Murai, S. Chem. Lett. 1999, 19; (j) Kakiuchi, F.; Sonoda, M.; Tsujimoto, T.; Chatani, N.; Murai, S. Chem. Lett. 1999, 1083; (k) Kakiuchi, F.; Gendre, P. L.; Yamada, A.; Ohtaki, H.; Murai, S. Tetrahedron: Asymmetry 2000, 11,
- (a) Lim, Y.-G.; Kim, Y. H.; Kang, J.-B. J. Chem. Soc., Chem. Commun. 1994, 2267; (b) Lim, Y.-G.; Kang, J.-B.; Kim, Y. H. Chem. Commun. 1996, 585; (c) Lim, Y.-G.; Kang, J.-B.; Kim, Y. H. J. Chem. Soc., Perkin Trans. 1 1996, 2201; (d) Lim, Y.-G.; Kang, J.-B.; Kim, Y. H. J. Chem. Soc., Perkin Trans. 1 1998, 699; (e) Lim, Y.-G.; Han, J.-S.; Koo, B. T.; Kang, J.-B. Bull. Korean Chem. Soc. 1999, 20, 1097; (f) Lim, Y.-G.; Kang, J.-B.; Koo, B.

- T. Tetrahedron Lett. 1999, 40, 7691; (g) Lim, Y.-G.; Han, J.-S.; Koo, B. T.; Kang, J.-B. Polymer 2000, 41, 4351; (h) Lim, Y.-G.; Han, J.-S.; Yang, S.-S.; Chun, J. H. Tetrahedron Lett. 2001, 42, 4853.
- Jun, C.-H.; Hong, J.-B.; Kim, Y.-H.; Chung, K.-Y. Angew. Chem., Int. Ed. 2000, 39, 3440.
- Trost, B. M.; Imi, K.; Davies, I. W. J. Am. Chem. Soc. 1995, 117, 5371.
- Lenges, C. P.; Brookhart, M. J. Am. Chem. Soc. 1999, 121, 6616.
- Guari, Y.; Sabo-Etienne, S.; Chaudret, B. J. Am. Chem. Soc. 1998, 120, 4228.
- Miura, M.; Tsuda, T.; Satoh, T.; Pivsa-Art, S.; Nomura, M. J. Org. Chem. 1998, 63, 5211.
- Matsumoto, T.; Taube, D. J.; Periana, R. A.; Taube, H.; Yoshida, H. J. Am. Chem. Soc. 2000, 122, 7414.
- (a) Kakiuchi, F.; Yamamoto, Y.; Chatani, N.; Murai, S. Chem. Lett. 1995, 681; (b) Kakiuchi, F.; Sato, T.; Tsujimoto, T.; Yamauchi, M.; Chatani, N.; Murai, S. Chem. Lett. 1998, 1053.
- 11. Harris, P. W. R.; Rickard, C. E. F.; Woodgate, P. D. *J. Organomet. Chem.* **1999**, *589*, 168.
- Satoh, T.; Nishinaka, Y.; Miura, M.; Nomura, M. Chem. Lett. 1999, 615.
- (a) Hong, P.; Cho, B.-R.; Yamazaki, H. Chem. Lett. 1979, 339; (b) Hong, P.; Cho, B.-R.; Yamazaki, H. Chem. Lett. 1980, 507; (c) Yamazaki, H.; Hong, P. J. Mol. Cat. 1983, 21, 133.
- (a) Halbritter, G.; Knoch, F.; Wolski, A.; Kisch, H. Angew. Chem., Int. Ed. Engl. 1994, 33, 1603; (b)
 Aulwurm, U. R.; Melchinger, J. U.; Kisch, H. Organometallics 1995, 14, 3385; (c) Durr, U.; Kisch, H. Synlett 1997, 1335.
- Otsuka, S.; Nakamura, A. Adv. Organomet. Chem. 1976, 14, 245.